Java HashMap源码分析

java admin 2000 0 评论

本文从 Hash 方法开始,通过分析源码,深入介绍了 JDK 不同版本中 HashMap 的实现。

HashMap 简介

HashMap 主要用来存放键值对,它基于哈希表的Map接口实现,是常用的Java集合之一。

JDK1.8 之前 HashMap 由 数组+链表 组成的,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的(“拉链法”解决冲突).JDK1.8 以后在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为 8)时,将链表转化为红黑树,以减少搜索时间。

底层数据结构分析

JDK1.8之前

JDK1.8 之前 HashMap 底层是 数组和链表 结合在一起使用也就是 链表散列HashMap 通过 key 的 hashCode 经过扰动函数处理过后得到 hash 值,然后通过 (n - 1) & hash 判断当前元素存放的位置(这里的 n 指的是数组的长度),如果当前位置存在元素的话,就判断该元素与要存入的元素的 hash 值以及 key 是否相同,如果相同的话,直接覆盖,不相同就通过拉链法解决冲突。

所谓扰动函数指的就是 HashMap 的 hash 方法。使用 hash 方法也就是扰动函数是为了防止一些实现比较差的 hashCode() 方法 换句话说使用扰动函数之后可以减少碰撞。

JDK 1.8 HashMap 的 hash 方法源码:

JDK 1.8 的 hash方法 相比于 JDK 1.7 hash 方法更加简化,但是原理不变。

static final int hash(Object key) {

int h;

// key.hashCode():返回散列值也就是hashcode

// ^ :按位异或

// >>>:无符号右移,忽略符号位,空位都以0补齐

return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

对比一下 JDK1.7的 HashMap 的 hash 方法源码.

static int hash(int h) {
// This function ensures that hashCodes that differ only by
// constant multiples at each bit position have a bounded
// number of collisions (approximately 8 at default load factor).

h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}

相比于 JDK1.8 的 hash 方法 ,JDK 1.7 的 hash 方法的性能会稍差一点点,因为毕竟扰动了 4 次。

所谓 “拉链法” 就是:将链表和数组相结合。也就是说创建一个链表数组,数组中每一格就是一个链表。若遇到哈希冲突,则将冲突的值加到链表中即可。

JDK1.8之后

相比于之前的版本,jdk1.8在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。

类的属性:

public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable {
// 序列号
private static final long serialVersionUID = 362498820763181265L;
// 默认的初始容量是16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
// 最大容量
static final int MAXIMUM_CAPACITY = 1 << 30;
 // 默认的填充因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 当桶(bucket)上的结点数大于这个值时会转成红黑树
static final int TREEIFY_THRESHOLD = 8;
 // 当桶(bucket)上的结点数小于这个值时树转链表
static final int UNTREEIFY_THRESHOLD = 6;
// 桶中结构转化为红黑树对应的table的最小大小
static final int MIN_TREEIFY_CAPACITY = 64;
// 存储元素的数组,总是2的幂次倍
transient Node<k,v>[] table;
 // 存放具体元素的集
transient Set<map.entry<k,v>> entrySet;
// 存放元素的个数,注意这个不等于数组的长度。
transient int size;
// 每次扩容和更改map结构的计数器
transient int modCount;
// 临界值 当实际大小(容量*填充因子)超过临界值时,会进行扩容
int threshold;
// 填充因子
final float loadFactor;
}
  • loadFactor加载因子

loadFactor加载因子是控制数组存放数据的疏密程度,loadFactor越趋近于1,那么 数组中存放的数据(entry)也就越多,也就越密,也就是会让链表的长度增加,load Factor越小,也就是趋近于0,

loadFactor太大导致查找元素效率低,太小导致数组的利用率低,存放的数据会很分散。loadFactor的默认值为0.75f是官方给出的一个比较好的临界值。

  • threshold

threshold = capacity * loadFactor,当Size>=threshold的时候,那么就要考虑对数组的扩增了,也就是说,这个的意思就是 衡量数组是否需要扩增的一个标准。

Node节点类源码:

// 继承自 Map.Entry<K,V>
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;// 哈希值,存放元素到hashmap中时用来与其他元素hash值比较
final K key;//键
V value;//值
// 指向下一个节点
Node<K,V> next;
Node(int hash, K key, V value, Node<K,V> next) {


this.hash = hash;


this.key = key;


this.value = value;


this.next = next;
}
public final K getKey()

{ return key; }
public final V getValue()
{ return value; }
public final String toString() { return key + "=" + value; }
// 重写hashCode()方法
public final int hashCode() {


return Objects.hashCode(key) ^ Objects.hashCode(value);
}

public final V setValue(V newValue) {


V oldValue = value;


value = newValue;


return oldValue;
}
// 重写 equals() 方法
public final boolean equals(Object o) {


if (o == this)


return true;


if (o instanceof Map.Entry) {


Map.Entry<?,?> e = (Map.Entry<?,?>)o;


if (Objects.equals(key, e.getKey()) &&


Objects.equals(value, e.getValue()))


return true;


}


return false;
}
}

树节点类源码:

static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
TreeNode<K,V> parent;
// 父
TreeNode<K,V> left;

// 左
TreeNode<K,V> right;
 // 右
TreeNode<K,V> prev;

// needed to unlink next upon deletion
boolean red;
 // 判断颜色
TreeNode(int hash, K key, V val, Node<K,V> next) {


super(hash, key, val, next);
}
// 返回根节点
final TreeNode<K,V> root() {


for (TreeNode<K,V> r = this, p;;) {


if ((p = r.parent) == null)


return r;


r = p;
}

HashMap源码分析

构造方法

// 默认构造函数。
public More ...HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all
 other fields defaulted
 }

 // 包含另一个“Map”的构造函数
 public More ...HashMap(Map<? extends K, ? extends V> m) {
 this.loadFactor = DEFAULT_LOAD_FACTOR;
 putMapEntries(m, false);//下面会分析到这个方法
 }

 // 指定“容量大小”的构造函数
 public More ...HashMap(int initialCapacity) {
 this(initialCapacity, DEFAULT_LOAD_FACTOR);
 }

 // 指定“容量大小”和“加载因子”的构造函数
 public More ...HashMap(int initialCapacity, float loadFactor) {
 if (initialCapacity < 0)
 throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
 if (initialCapacity > MAXIMUM_CAPACITY)
 initialCapacity = MAXIMUM_CAPACITY;
 if (loadFactor <= 0 || Float.isNaN(loadFactor))
 throw new IllegalArgumentException("Illegal load factor: " + loadFactor);
 this.loadFactor = loadFactor;
 this.threshold = tableSizeFor(initialCapacity);
 }

putMapEntries方法:

final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
int s = m.size();
if (s > 0) {
// 判断table是否已经初始化
if (table == null) { // pre-size


// 未初始化,s为m的实际元素个数


float ft = ((float)s / loadFactor) + 1.0F;


int t = ((ft < (float)MAXIMUM_CAPACITY) ?


(int)ft : MAXIMUM_CAPACITY);


// 计算得到的t大于阈值,则初始化阈值


if (t > threshold)


threshold = tableSizeFor(t);
}
// 已初始化,并且m元素个数大于阈值,进行扩容处理
else if (s > threshold)


resize();
// 将m中的所有元素添加至HashMap中
for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {


K key = e.getKey();


V value = e.getValue();


putVal(hash(key), key, value, false, evict);
}
}
}

put方法

HashMap只提供了put用于添加元素,putVal方法只是给put方法调用的一个方法,并没有提供给用户使用。

对putVal方法添加元素的分析如下:

  • ①如果定位到的数组位置没有元素 就直接插入。
  • ②如果定位到的数组位置有元素就和要插入的 key 比较,如果key相同就直接覆盖,如果 key 不相同,就判断 p 是否是一个树节点,如果是就调用 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value) 将元素添加进入。如果不是就遍历链表插入。

public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,

 boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// table未初始化或者长度为0,进行扩容
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// (n - 1) & hash 确定元素存放在哪个桶中,桶为空,新生成结点放入桶中(此时,这个结点是放在数组中)
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
// 桶中已经存在元素
else {
Node<K,V> e; K k;
// 比较桶中第一个元素(数组中的结点)的hash值相等,key相等
if (p.hash == hash &&


((k = p.key) == key || (key != null && key.equals(k))))


// 将第一个元素赋值给e,用e来记录


e = p;
// hash值不相等,即key不相等;为红黑树结点
else if (p instanceof TreeNode)


// 放入树中


e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
// 为链表结点
else {


// 在链表最末插入结点


for (int binCount = 0; ; ++binCount) {


// 到达链表的尾部


if ((e = p.next) == null) {


// 在尾部插入新结点


p.next = newNode(hash, key, value, null);


// 结点数量达到阈值,转化为红黑树


if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st


treeifyBin(tab, hash);


// 跳出循环


break;


}


// 判断链表中结点的key值与插入的元素的key值是否相等


if (e.hash == hash &&


((k = e.key) == key || (key != null && key.equals(k))))


// 相等,跳出循环


break;


// 用于遍历桶中的链表,与前面的e = p.next组合,可以遍历链表


p = e;


}
}
// 表示在桶中找到key值、hash值与插入元素相等的结点
if (e != null) {


 // 记录e的value


V oldValue = e.value;


// onlyIfAbsent为false或者旧值为null


if (!onlyIfAbsent || oldValue == null)


//用新值替换旧值


e.value = value;


// 访问后回调


afterNodeAccess(e);


// 返回旧值


return oldValue;
}
}
// 结构性修改
++modCount;
// 实际大小大于阈值则扩容
if (++size > threshold)
resize();
// 插入后回调
afterNodeInsertion(evict);
return null;
}

我们再来对比一下 JDK1.7 put方法的代码

对于put方法的分析如下:

  • ①如果定位到的数组位置没有元素 就直接插入。
  • ②如果定位到的数组位置有元素,遍历以这个元素为头结点的链表,依次和插入的key比较,如果key相同就直接覆盖,不同就采用头插法插入元素。
public V put(K key, V value)
if (table == EMPTY_TABLE) {
 inflateTable(threshold);
 }

if (key == null)
return putForNullKey(value);
int hash = hash(key);
int i = indexFor(hash, table.length);
for (Entry<K,V> e = table[i]; e != null; e = e.next) { // 先遍历
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {


V oldValue = e.value;


e.value = value;


e.recordAccess(this);


return oldValue;
 }
}

modCount++;
addEntry(hash, key, value, i);
// 再插入
return null;
}

get方法

public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}

final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
// 数组元素相等
if (first.hash == hash && // always check first node


((k = first.key) == key || (key != null && key.equals(k))))


return first;
// 桶中不止一个节点
if ((e = first.next) != null) {


// 在树中get


if (first instanceof TreeNode)


return ((TreeNode<K,V>)first).getTreeNode(hash, key);


// 在链表中get


do {


if (e.hash == hash &&


((k = e.key) == key || (key != null && key.equals(k))))


return e;


} while ((e = e.next) != null);
}
}
return null;
}

resize方法

进行扩容,会伴随着一次重新hash分配,并且会遍历hash表中所有的元素,是非常耗时的。在编写程序中,要尽量避免resize。

final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
// 超过最大值就不再扩充了,就只好随你碰撞去吧
if (oldCap >= MAXIMUM_CAPACITY) {


threshold = Integer.MAX_VALUE;


return oldTab;
}
// 没超过最大值,就扩充为原来的2倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY)


newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else {
 signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
// 计算新的resize上限
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
// 把每个bucket都移动到新的buckets中
for (int j = 0; j < oldCap; ++j) {


Node<K,V> e;


if ((e = oldTab[j]) != null) {


oldTab[j] = null;


if (e.next == null)


newTab[e.hash & (newCap - 1)] = e;


else if (e instanceof TreeNode)


((TreeNode<K,V>)e).split(this, newTab, j, oldCap);


else {


 Node<K,V> loHead = null, loTail = null;


Node<K,V> hiHead = null, hiTail = null;


Node<K,V> next;


do {


next = e.next;


// 原索引


if ((e.hash & oldCap) == 0) {


if (loTail == null)




loHead = e;


else




loTail.next = e;


loTail = e;


}


// 原索引+oldCap


else {


if (hiTail == null)




hiHead = e;


else




hiTail.next = e;


hiTail = e;


}


} while ((e = next) != null);


// 原索引放到bucket里


if (loTail != null) {


loTail.next = null;


newTab[j] = loHead;


}


// 原索引+oldCap放到bucket里


if (hiTail != null) {


hiTail.next = null;


newTab[j + oldCap] = hiHead;


}


}


}
}
}
return newTab;
}

HashMap常用方法测试

package map;

import java.util.Collection;
import java.util.HashMap;
import java.util.Set;

public class HashMapDemo {

public static void main(String[] args) {
HashMap<String, String> map = new HashMap<String, String>();
// 键不能重复,值可以重复
map.put("san", "张三");
map.put("si", "李四");
map.put("wu", "王五");
map.put("wang", "老王");
map.put("wang", "老王2");// 老王被覆盖
map.put("lao", "老王");
System.out.println("-------直接输出hashmap:-------");
System.out.println(map);
/**
 * 遍历HashMap
 */
// 1.获取Map中的所有键
System.out.println("-------foreach获取Map中所有的键:------");
Set<String> keys = map.keySet();
for (String key : keys) {


System.out.print(key+"
");
}
System.out.println();//换行
// 2.获取Map中所有值
System.out.println("-------foreach获取Map中所有的值:------");
Collection<String> values = map.values();
for (String value : values) {


System.out.print(value+"
");
}
System.out.println();//换行
// 3.得到key的值的同时得到key所对应的值
System.out.println("-------得到key的值的同时得到key所对应的值:-------");
Set<String> keys2 = map.keySet();
for (String key : keys2) {


System.out.print(key + ":" + map.get(key)+"
 ");

}
/**
 * 另外一种不常用的遍历方式
 */
// 当我调用put(key,value)方法的时候,首先会把key和value封装到
// Entry这个静态内部类对象中,把Entry对象再添加到数组中,所以我们想获取
// map中的所有键值对,我们只要获取数组中的所有Entry对象,接下来
// 调用Entry对象中的getKey()和getValue()方法就能获取键值对了
Set<java.util.Map.Entry<String, String>> entrys = map.entrySet();
for (java.util.Map.Entry<String, String> entry : entrys) {


System.out.println(entry.getKey() + "--" + entry.getValue());
}

/**
 * HashMap其他常用方法
 */
System.out.println("after map.size():"+map.size());
System.out.println("after map.isEmpty():"+map.isEmpty());
System.out.println(map.remove("san"));
System.out.println("after map.remove():"+map);
System.out.println("after map.get(si):"+map.get("si"));
System.out.println("after map.containsKey(si):"+map.containsKey("si"));
System.out.println("after containsValue(李四):"+map.containsValue("李四"));
System.out.println(map.replace("si", "李四2"));
System.out.println("after map.replace(si, 李四2):"+map);
}

}

转载请注明: 飞嗨_分享互联网 » Java HashMap源码分析

赞 (0) or 分享 (0)
游客 发表我的评论   换个身份
取消评论

表情
(0)个小伙伴在吐槽

高效,专业,符合SEO

联系我们