数学建模三剑客 MSN

python admin 1700 0 评论

前言

不管是不是巴萨的球迷,只要你喜欢足球,就一定听说过梅西(Messi)、苏亚雷斯(Suarez)和内马尔(Neymar)这个MSN组合。在众多的数学建模辅助工具中,也有一个犀利无比的MSN组合,他们就是python麾下大名鼎鼎的 Matplotlib + Scipy + Numpy三剑客。

本文是我整理的MSN学习笔记,有些理解可能比较肤浅,甚至是错误的。如果因此误导了某位看官,在工作中造成重大失误或损失,我顶多只能赔偿一顿饭——还得是我们楼下的十元盒饭。特此声明。

文中代码均从我的这台时不时出点问题、闹个情绪的Yoga 3 pro上复制而来,这意味着所有的代码均可在下面的运行环境中顺利运行:

  • pyhton 2.7.8
  • numpy 1.11.1
  • scipy 0.16.1
  • matplotlib 1.5.1

三剑客之Numpy

numpy是一个开源的python科学计算库,包含了很多实用的数学函数,涵盖线性代数、傅里叶变换和随机数生成等功能。最初的numpy其实是scipy的一部分,后来才从scipy中分离出来。

numpy不是python的标准库,需要单独安装。假定你的运行环境已经安装了python包管理工具pip,numpy的安装就非常简单:

数组对象

ndarray是多维数组对象,也是numpy最核心的对象。在numpy中,数组的维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank)。通常,一个numpy数组的所有元素都是同一种类型的数据,而这些数据的存储和数组的形式无关。

下面的例子,创建了一个三维的数组(在导入numpy时,一般都简写成np)。

数据类型

numpy支持的数据类型主要有布尔型(bool)、整型(integrate)、浮点型(float)和复数型(complex),每一种数据类型根据占用内存的字节数又分为多个不同的子类型。常见的数据类型见下表。

构造复杂数组

很多时候,我们需要从简单的数据结构,构造出复杂的数组。例如,用一维的数据生成二维格点。

重复数组: tile

一维数组网格化: meshgrid

指定范围和分割方式的网格化: mgrid

上面的例子中用到了虚数。构造虚数的方法如下:

数组的属性

numpy的数组对象除了一些常规的属性外,也有几个类似转置、扁平迭代器等看起来更像是方法的属性。扁平迭代器也许是遍历多维数组的一个简明方法,下面的代码给出了一个例子。

改变数组维度

numpy数组的存储顺序和数组的维度是不相干的,因此改变数组的维度是非常便捷的操作,除resize()外,这一类操作不会改变所操作的数组本身的存储顺序。

索引和切片

对于一维数组的索引和切片,numpy和python的list一样,甚至更灵活。

假设有一栋2层楼,每层楼内的房间都是3排4列,那我们可以用一个三维数组来保存每个房间的居住人数(当然,也可以是房间面积等其他数值信息)。

数组合并

数组合并除了下面介绍的水平合并、垂直合并、深度合并外,还有行合并、列合并,以及concatenate()等方式。假如你比我还懒,那就只了解前三种方法吧,足够用了。

数组拆分

拆分是合并的逆过程,概念是一样的,但稍微有一点不同:

数组运算

数组和常数的四则运算,是数组的每一个元素分别和常数运算;数组和数组的四则运算则是两个数组对应元素的运算(两个数组有相同的shape,否则抛出异常)。

特别提示:如果想对数组内符合特定条件的元素做特殊处理,下面的代码也许有用。

数组方法和常用函数

数组对象本身提供了计算算数平均值、求最大最小值等内置方法,numpy也提供了很多实用的函数。为了缩减篇幅,下面的代码仅以一维数组为例,展示了这些方法和函数用法。事实上,大多数情况下这些方法和函数对于多维数组同样有效,只有少数例外,比如compress函数。

矩阵对象

matrix是矩阵对象,继承自ndarray类型,因此含有ndarray的所有数据属性和方法。不过,当你把矩阵对象当数组操作时,需要注意以下几点:

创建矩阵

matrix对象可以使用一个Matlab风格的字符串来创建(以空格分隔列,以分号分隔行的字符串),也可以用数组来创建。

矩阵的特有属性

矩阵有几个特有的属性使得计算更加容易,这些属性有:

矩阵乘法

对ndarray对象而言,星号是按元素相乘,dot()函数则当作矩阵相乘。对于matrix对象来说,星号和dot()函数都是矩阵相乘。特别的,对于一维数组,dot()函数实现的是向量点乘(结果是标量),但星号实现的却不是差乘。

线性代数模块

numpy.linalg 是numpy的线性代数模块,可以用来解决逆矩阵、特征值、线性方程组以及行列式等问题。

计算逆矩阵

尽管matrix对象本身有逆矩阵的属性,但用numpy.linalg模块求解矩阵的逆,也是非常简单的。

计算行列式

如何计算行列式,我早已经不记得了,但手工计算行列式的痛苦,我依然记忆犹新。现在好了,你在手机上都可以用numpy轻松搞定(前提是你的手机上安装了python + numpy)。

计算特征值和特征向量

截至目前,我的工作和特征值、特征向量还有没任何关联。记录这一节,纯粹是为了我女儿,她正在读数学专业。

求解线性方程组

有线性方程组如下:

x – 2y + z = 0
2y -8z = 8
-4x + 5y + 9z = -9

求解过程如下:

三剑客之Matplotlib

matplotlib 是python最著名的绘图库,它提供了一整套和Matlab相似的命令API,十分适合交互式地进行制图。而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中。matplotlib 可以绘制多种形式的图形包括普通的线图,直方图,饼图,散点图以及误差线图等;可以比较方便的定制图形的各种属性比如图线的类型,颜色,粗细,字体的大小等;它能够很好地支持一部分 TeX 排版命令,可以比较美观地显示图形中的数学公式。

Demo

pylot介绍

Matplotlib 包含了几十个不同的模块, 如 matlab、mathtext、finance、dates 等,而 pylot 则是我们最常用的绘图模块,这也是本文介绍的重点。

中文显示问题的解决方案

有很多方法可以解决此问题,但下面的方法恐怕是最简单的解决方案了(我只在windows平台上测试过,其他平台请看官自测)。如果想了解更多,也可以参考我N年前的一片博文:matplotlib显示中文的解决方案

绘制最简单的图形

最简单的正弦曲线

设置标题、坐标轴名称、坐标轴范围

如果你在python的shell中运行下面的代码,而shell的默认编码又不是utf-8的话,中文可能仍然会显示为乱码。你可以尝试着把 u’正弦曲线’ 写成 ‘正弦曲线’.decode(‘gbk’)或者‘正弦曲线’.decode(‘utf-8’)

设置标题和坐标轴

设置点和线的样式、宽度、颜色

plt.plot函数的调用形式如下:

  1. color指定线的颜色,可简写为“c”。颜色的选项为:
    • 蓝色: ‘b’ (blue)
    • 绿色: ‘g’ (green)
    • 红色: ‘r’ (red)
    • 墨绿: ‘c’ (cyan)
    • 洋红: ‘m’ (magenta)
    • 黄色: ‘y’ (yellow)
    • 黑色: ‘k’ (black)
    • 白色: ‘w’ (white)
    • 灰度表示: e.g. 0.75 ([0,1]内任意浮点数)
    • RGB表示法: e.g. ‘#2F4F4F’ 或 (0.18, 0.31, 0.31)
  2. linestyle指定线型,可简写为“ls”。线型的选项为:
    • 实线: ‘-’ (solid line)
    • 虚线: ‘–’ (dashed line)
    • 虚点线: ‘-.’ (dash-dot line)
    • 点线: ‘:’ (dotted line)
    • 无: ”或’ ‘或’None’
  3. linewidth指定线宽,可简写为“lw”。
  4. marker描述数据点的形状
    • 点线: ‘.’
    • 点线: ‘o’
    • 加号: ‘+
    • 叉号: ‘x’
    • 上三角: ‘^’
    • 上三角: ‘v’
  5. markerfacecolor指定数据点标记的表面颜色,可 简写为“ mfc”。
  6. markersize指定数据点标记的大小,可 简写为“ ms”。

文本标注和图例

我们分别使用不同的线型、颜色来绘制以10、e、2为基的一组幂函数曲线,演示文本标注和图例的使用。

这里写图片描述

在绘制图例时,loc用于指定图例的位置,可用的选项有:

绘制多轴图

在介绍如何将多幅子图绘制在同一画板的同时,顺便演示如何绘制直线和矩形。我们可以使用subplot函数快速绘制有多个轴的图表。subplot函数的调用形式如下:

subplot将整个绘图区域等分为numRows行 * numCols列个子区域,然后按照从左到右,从上到下的顺序对每个子区域进行编号,左上的子区域的编号为1。如果numRows,numCols和plotNum这三个数都小于10的话,可以把它们缩写为一个整数,例如subplot(323)和subplot(3,2,3)是相同的。subplot在plotNum指定的区域中创建一个轴对象。如果新创建的轴和之前创建的轴重叠的话,之前的轴将被删除。

绘制多轴图

常用绘图类型

直方图

用numpy随机生成一个符合正态分布的数据集,统计分段区域内数据的个数。

直方图

散点图

使用plot()绘图时,如果指定样式参数为仅绘制数据点(linestyle=’None’),那么所绘制的就是一幅散列图。这种方法所绘制的点无法单独指定数据点的颜色和大小,而使用scatter()绘制散列图就可以指定每个点的颜色和大小。

plt.scatter函数的调用形式如下:

scatter()的前两个参数是数组,分别指定每个点的X轴和Y轴的坐标。s参数指定点的大 小,值和点的面积成正比,它可以是一个数,指定所有点的大小,也可以是数组,分别对每个点指定大小。c参数指定每个点的颜色,可以是数值或数组。这里使用一维数组为每个点指定了一个数值。通过颜色映射表,每个数值都会与一个颜色相对应。默认的颜色映射表中蓝色与最小值对应,红色与最大值对应。当c参数是形状为(N,3)或(N,4)的二维数组时,则直接表示每个点的RGB颜色。marker参数设置点的形状,可以是个表示形状的字符串,也可以是表示多边形的两个元素的元组,第一个元素表示多边形的边数,第二个元素表示多边形的样式,取值范围为0、1、2、3。0表示多边形,1表示星形,2表示放射形,3表示忽略边数而显示为圆形。alpha参数设置点的透明度。facecolors参数为“none”时,表示散列点没有填充色。

散点图

梯形图、柱状图、填充图

梯形图、柱状图、填充图

对数坐标

plot()所绘制图表的X-Y轴坐标都是算术坐标。绘制对数坐标图的函数有三个:semilogx()、semilogy()和loglog(),它们分别绘制X轴为对数坐标、Y轴为对数坐标以及两个轴都为对数坐标时的图表。

对数坐标

极坐标绘图

极坐标系是和笛卡尔(X-Y)坐标系完全不同的坐标系,极坐标系中的点由一个夹角和一段相对中心点的距离来表示。polar(theta, r, **kwargs)可以直接创建极坐标子图并在其中绘制曲线。也可以使用程序中调用subplot()创建子图时通过设 polar参数为True,创建一个极坐标子图,然后调用plot()在极坐标子图中绘图。

极坐标绘图

2D绘图

等值线图

所谓等值线,是指由函数值相等的各点连成的平滑曲线。等值线可以直观地表示二元函数值的变化趋势,例如等值线密集的地方表示函数值在此处的变化较大。matplotlib中可以使用contour()和contourf()描绘等值线,它们的区别是:contourf()所得到的是带填充效果的等值线。

为了更淸楚地区分X轴和Y轴,这里让它们的取值范围和等分次数均不相同.这样得 到的数组z的形状为(200, 300),它的第0轴对应Y轴、第1轴对应X轴。

调用contour()绘制数组z的等值线图,第二个参数为10,表示将整个函数的取值范围等分为10个区间,即显示的等值线图中将有9条等值线。可以使用extent参数指定等值线图的X轴和Y轴的数据范围。

contour()所返回的是一个QuadContourSet对象, 将它传递给clabel(),为其中的等值线标上对应的值。

调用contourf(),绘制将取值范围等分为20份、带填充效果的等值线图。这里演示了另外一种设置X、Y轴取值范围的方法,它的前两个参数分别是计算数组z时所使用的X轴和Y轴上的取样点,这两个数组必须是一维的。

等值线图

二维数据的平面色彩显示

二维数据的平面色彩显示

3D绘图

虽然matplotlib主要专注于绘图,并且主要是二维的图形,但是它也有一些不同的扩展,能让我们在地理图上绘图,让我们把Excel和3D图表结合起来。在matplotlib的世界里,这些扩展叫做工具包(toolkits)。工具包是一些关注在某个话题(如3D绘图)的特定函数的集合。

比较流行的工具包有Basemap、GTK 工具、Excel工具、Natgrid、AxesGrid和mplot3d。

mpl_toolkits.mplot3工具包提供了一些基本的3D绘图功能,其支持的图表类型包括散点图(scatter)、曲面图(surf)、线图(line)和网格图(mesh)。虽然mplot3d不是一个最好的3D图形绘制库,但是它是伴随着matplotlib产生的,因此我们对其接口已经很熟悉了。

下面是一个使用plot_surface绘制3d曲面图的例子。

这里写图片描述

三剑客之Scipy

前面已经说过,最初的numpy其实是scipy的一部分,后来才从scipy中分离出来。scipy函数库在numpy库的基础上增加了众多的数学、科学以及工程计算中常用的库函数。例如线性代数、常微分方程数值求解、信号处理、图像处理、稀疏矩阵等等。由于其涉及的领域众多,我之于scipy,就像盲人摸大象,只能是摸到哪儿算哪儿。

插值

一维插值和二维插值,是我最常用的scipy的功能之一,也是最容易上手的。

一维插值和样条插值

下面的例子清楚地展示了线性插值和样条插值之后的数据形态。

将原始数据以及线性插值和样条插值之后的数据绘制在一起,效果会比较明显:

20170214134535169

代码如下:

特别说明:样条插值附带了很多默认参数,下面是简单的说明。详情请自行搜索。

二维插值

在一个房间的地板上按九宫格的位置放置9个温度传感器,测得温度如下:

在不增加传感器的前提下,我们采用二维插值的方法,可以使得数据变化较为平滑:

下图是根据原始数据和插值数据绘制的该房间温度平面图。

根据原始数据和插值数据绘制的该房间温度平面图

拟合

在工作中,我们常常需要在图中描绘某些实际数据观察的同时,使用一个曲线来拟合这些实际数据。所谓拟合,就是找出符合数据变化趋势的曲线方程,或者直接绘制出拟合曲线。

使用numpy.polyfit拟合

下面这段代码,基于Numpy模块,可以直接绘制出拟合曲线,但我无法得到曲线方程(尽管输出了一堆曲线参数)。这是一个值得继续深入研究的问题。

3个拟合结果显示在下图中。

这里写图片描述

使用scipy.optimize.optimize.curve_fit拟合

scipy提供的拟合,貌似需要先确定带参数的曲线方程,然后由scipy求解方程,返回曲线参数。我们还是以上面的一组数据为例使用scipy拟合曲线。

原始数据折线图

可以看出,曲线近似正弦函数。构建函数y=a*sin(x*pi/6+b)+c,使用scipy的optimize.curve_fit函数求出a、b、c的值:

拟合后的对比图

求解非线性方程(组)

在数学建模中,需要对一些稀奇古怪的方程(组)求解,Matlab自然是首选,但Matlab不是免费的,scipy则为我们提供了免费的午餐!scipy.optimize库中的fsolve函数可以用来对非线性方程(组)进行求解。它的基本调用形式如下:

func(x)是计算方程组误差的函数,它的参数x是一个矢量,表示方程组的各个未知数的一组可能解,func返回将x代入方程组之后得到的误差;x0为未知数矢量的初始值。

我们先来求解一个简单的方程:sin(x)cos(x)=0.2

哈哈,易如反掌!再来一个方程组:

4x22sin(yz)=0
5y+3=0
yz1.5=0

数值积分

数值积分是对定积分的数值求解,例如可以利用数值积分计算某个形状的面积。我们知道,半径为1的圆的方程可写成:

 

x2+y2=1

下面让我们来考虑一下如何计算半径为1的半圆的面积,根据圆的面积公式,其面积应该等于PI/2。单位半圆曲线可以用下面的函数表示:

 

y=1x2−−−−−√

我们先定义一个计算根据x计算y的函数:

经典微分法

下面的程序使用经典的分小矩形计算面积总和的方式,计算出单位半圆的面积:

使用定积分求解函数

如果我们调用scipy.integrate库中的quad函数的话,将会得到非常精确的结果:

图像处理

在scipy.misc模块中,有一个函数可以载入Lena图像——这副图像是被用作图像处理的经典示范图像。我只是简单展示一下在该图像上的几个操作。

  1. 载入Lena图像,并显示灰度图像
  2. 应用中值滤波扫描信号的每一个数据点,并替换为相邻数据点的中值
  3. 旋转图像
  4. 应用Prewitt滤波器(基于图像强度的梯度计算)

Lena

后记

这篇博文自2016年9月初动笔,断断续续写了5个多月。延宕这么久,除了自身懒惰的原因外,主要是因为MSN这个主题涉及的内容太过繁杂,又极其晦涩,无论怎么努力,总怕挂一漏万、贻笑大方。

现在好了,终于写完了。倘若哪位看官发现了谬误,请自行修改,顺便通知我一声;若因此文受益而想约饭、约酒,请发邮件至:xufive@gmail.com

1 收藏 评论

转载请注明: 飞嗨_分享互联网 » 数学建模三剑客 MSN

赞 (0) or 分享 (0)
游客 发表我的评论   换个身份
取消评论

表情
(0)个小伙伴在吐槽

高效,专业,符合SEO

联系我们